Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Math Biol ; 85(1): 2, 2022 06 30.
Article in English | MEDLINE | ID: covidwho-1906031

ABSTRACT

We study a susceptible-exposed-infected-recovered (SEIR) model considered by Aguas et al. (In: Herd immunity thresholds for SARS-CoV-2 estimated from unfolding epidemics, 2021), Gomes et al. (In: J Theor Biol. 540:111063, 2022) where individuals are assumed to differ in their susceptibility or exposure to infection. Under this heterogeneity assumption, epidemic growth is effectively suppressed when the percentage of the population having acquired immunity surpasses a critical level - the herd immunity threshold - that is lower than in homogeneous populations. We derive explicit formulas to calculate herd immunity thresholds and stable configurations, especially when susceptibility or exposure are gamma distributed, and explore extensions of the model.


Subject(s)
COVID-19 , Epidemics , COVID-19/epidemiology , Humans , Immunity, Herd , Reinfection/epidemiology , SARS-CoV-2
2.
J Theor Biol ; 540: 111063, 2022 05 07.
Article in English | MEDLINE | ID: covidwho-1693204

ABSTRACT

Individual variation in susceptibility and exposure is subject to selection by natural infection, accelerating the acquisition of immunity, and reducing herd immunity thresholds and epidemic final sizes. This is a manifestation of a wider population phenomenon known as "frailty variation". Despite theoretical understanding, public health policies continue to be guided by mathematical models that leave out considerable variation and as a result inflate projected disease burdens and overestimate the impact of interventions. Here we focus on trajectories of the coronavirus disease (COVID-19) pandemic in England and Scotland until November 2021. We fit models to series of daily deaths and infer relevant epidemiological parameters, including coefficients of variation and effects of non-pharmaceutical interventions which we find in agreement with independent empirical estimates based on contact surveys. Our estimates are robust to whether the analysed data series encompass one or two pandemic waves and enable projections compatible with subsequent dynamics. We conclude that vaccination programmes may have contributed modestly to the acquisition of herd immunity in populations with high levels of pre-existing naturally acquired immunity, while being crucial to protect vulnerable individuals from severe outcomes as the virus becomes endemic.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Immunity, Herd , Pandemics/prevention & control , Vaccination
3.
Emerg Infect Dis ; 28(3): 709-712, 2022 03.
Article in English | MEDLINE | ID: covidwho-1596439

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Gamma variant has been hypothesized to cause more severe illness than previous variants, especially in children. Successive SARS-CoV-2 IgG serosurveys in the Brazilian Amazon showed that age-specific attack rates and proportions of symptomatic SARS-CoV-2 infections were similar before and after Gamma variant emergence.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Brazil/epidemiology , Child , Humans
4.
Clin Infect Dis ; 73(11): 2045-2054, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1560351

ABSTRACT

BACKGROUND: Immunity after dengue virus (DENV) infection has been suggested to cross-protect from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and mortality. METHODS: We tested whether serologically proven prior DENV infection diagnosed in September-October 2019, before the coronavirus disease 2019 (COVID-19) pandemic, reduced the risk of SARS-CoV-2 infection and clinically apparent COVID-19 over the next 13 months in a population-based cohort in Amazonian Brazil. Mixed-effects multiple logistic regression analysis was used to identify predictors of infection and disease, adjusting for potential individual and household-level confounders. Virus genomes from 14 local SARS-CoV-2 isolates were obtained using whole-genome sequencing. RESULTS: Anti-DENV immunoglobulin G (IgG) was found in 37.0% of 1285 cohort participants (95% confidence interval [CI]: 34.3% to 39.7%) in 2019, with 10.4 (95% CI: 6.7-15.5) seroconversion events per 100 person-years during the follow-up. In 2020, 35.2% of the participants (95% CI: 32.6% to 37.8%) had anti-SARS-CoV-2 IgG and 57.1% of the 448 SARS-CoV-2 seropositives (95% CI: 52.4% to 61.8%) reported clinical manifestations at the time of infection. Participants aged >60 years were twice more likely to have symptomatic COVID-19 than children under 5 years. Locally circulating SARS-CoV-2 isolates were assigned to the B.1.1.33 lineage. Contrary to the cross-protection hypothesis, prior DENV infection was associated with twice the risk of clinically apparent COVID-19 upon SARS-CoV-2 infection, with P values between .025 and .039 after adjustment for identified confounders. CONCLUSIONS: Higher risk of clinically apparent COVID-19 among individuals with prior dengue has important public health implications for communities sequentially exposed to DENV and SARS-CoV-2 epidemics.


Subject(s)
COVID-19 , Dengue , Brazil/epidemiology , Child , Child, Preschool , Cohort Studies , Dengue/epidemiology , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL